Accounting for Time

- In addition to computing all benefits and costs in money terms,...
- The monetary costs and benefits must be calculated at a single point in time.
- In this way can compare projects that have very different time profiles of benefits and costs.

Compounding

- Interest rate is applied to periodically (every year) to both principal and earned interest
 - Year 0: 100
 - (x 1.08 *multiplication factor for 8% interest rate*)
 - Year 1: 108

- (x 1.08)

- Year 2: 116.64
 - (x 1.08)
- Year 3: 125.97

– etc

Compounding

- Future Value (FV) of X in time period t = X _ (1+r)^t
- The value in time t of \$1 invested today (time 0).
- Compounding Factor: (1+r)^t
 (Spreadsheet Example)

Discounting (Opposite of Compounding)

 Present Value (PV) of = X_t received in time period t =

 $1/(1+r)^{t} X_{n}$

- Amount of money needed to invest today to obtain X_t in time t
- Discounting Factor

 (1/(1+r)^t)
 (Spreadsheet example)

- At 8% interest rate,
 - \$125.97 in year 3 is equivalent to having 100 in year 0.
 - If I invested \$100 today, I would have \$125.97 three years from now.
 - By discounting we are including the opportunity cost of capital.
 - If the discounted net benefits of a project are positive, the return on this investment are greater than the market rate of interest

YR	Costs	Benefits	Net	Discount Factor ^a	PV
1	100	0	-100	.926	-92.59
2	0	109	109	.857	93.45
Total	100	109	9		0.86

^aDiscount at 8%

• Discounting permits comparison of projects with different profiles of costs and benefits

Flow of Costs and Benefits

	Option 1			Option 2		
YR	Cost	Benefit	Net Benefit	Cost	Benefit	Net Benefit
0	100	0	-100	40	50	10
1	10	0	-10	40	50	10
2	10	150	140	40	50	10
Sum	120	150	30	120	150	30

Option 1

	Net	Compound	Discount	PV Net
YR	Benefits	factor ^a	Factor ^a	Benefits
0	-100	1.000	1.000	-100
1	-10	1.080	.9259	-9.26
2	140	1.1664	.8573	120.02
Total	30			10.76

^aDiscount at 8%

Option 2

YR	Net Benefits	Compound factor ^a	Discount Factor ^a	PV Net Benefits
0	10	1.000	1.000	10.00
1	10	1.080	.9259	9.26
2	10	1.1664	.8573	8.57
Total	30			27.83

^aDiscount at 8%

Issues in Discounting

- Real versus nominal prices and interest rate
 See Boardman et al. pp. 135-140
- Projects with different time horizons
 - See Boardman et al. pp. 133-134

Real vs Nominal Values

- Inflation rate = i
- $CPI_1 = CPI_0 * (1+i)$
- Real price (in time 0 prices) of price X1 in time 1 is:
 - $X_1 * (CPI_0/CPI_1)$
 - $= X_1 * (1/(1+i))$

Real vs Nominal Values

- So if invest \$X today at an interest rate of 8% (r = 0.08) and inflation rate is 5% (i = 0.05):
 - $FV_{real} = X * (1+r)/(1+i)$ = (1.08/1.05) \approx 1.03
- So, the *real* interest rate = (1+r)/(1+i)
 - \approx (1+(r-i))

Real vs Nominal Values

- In CBA calculations, may project costs and benefits in nominal or real terms, but need to be consistent with interest rate:
 - If use nominal prices, need to use nominal interest rate
 - If use real prices, need to use real interest rate

Consider two options:

- 1. Hydroelectric dam
 - 75 year life
 - NPV = 30 million
- 2. Cogeneration project
 - 15 year life
 - NPV = 24 million

Choose Hydroelectric because higher NPV?

• But could have 5 consecutive cogeneration projects over the life of the hydroelectric dam

- NPV(5xCP) = $24 + 24^{*}(1.08)^{15} + 24^{*}(1.08)^{30} + 24^{*}(1.08)^{45}$ $+ 24^{*}(1.08)^{60}$
- =34.94 million
- See spreadsheet example

- Need to put on equal time horizon:
- Equivalent Annual Net Benefit (EANB):
 - NPV / Annuity Factor
 - Gives the amount which, if received every year for the life of the project, would have the same NPV as the project.

- Annuities: receive an equal (nominal) payment every year for a fixed number of years
- 1. $PV = A(1+r)^{-1} + A(1+r)^{-2} + ...A(1+r)^{-t}$
- 2. $PV(1+r) = A + A(1+r)^{-1} + \dots A(1+r)^{-(t-1)}$
- 3. $PV(1+r) PV = A A(1+r)^{-t}$ [2. -1.]
- 4. $PV(1+r-1) = A A(1+r)^{-t}$
- 5. $PV = A((1-(1+r)^{-t})/r)$

- Annuity factor:
- $((1-(1+r)^{-t})/r)$

This gives the present value of receiving \$1 per year for T years.

(Spreadsheet example)

- EANB for Hydroelectric plant
 - \$30 million / annuity factor for 75 years (8%)
 - \$30 million / 12.4611 = \$2.407 million
- EANB for cogeneration plant:
 - \$24 million / annuity factor for 15 years (8%)
 - \$24 million / 8.559 = 2.804 million

Arguments against Discounting

- Particular concern for environmentalists:
 - Discounting undervalues long-term environmental costs of current actions
 - At 5% discount rate, PV of \$1 in 30 years is only \$0.23
 - "Equal Standing" argument Future generations should have equal weight

Arguments for discounting in CBA

- Reflects time preferences of consumers
- Opportunity cost of capital
- Without discounting, give too much weight to future generations
 - Assumes that future generations will not benefit from higher incomes (*counter to historical evidence*)
 - The relatively poor current generation has greater weight than the relatively rich later generations